
Università di Padova 2 Facoltà di Ingegneria
Dipartimento di Ingegneria dell’Informazione

Tesi di Laurea Specialistica in Ingegneria Informatica

A practical approach to
music theory on the Reactable

Andrea Franceschini

relatore
Prof. Giovanni De Poli

supervisore
Dott. Sergi Jordà

–  he glory of creation is in its infinite diversity
–  And the way our differences combine to create meaning and beauty

Dr. Miranda Jones and Spock, "Is there in truth no beauty?", star date 5630.8

Contents

1.	 Background	 1
1.1 Audiovisual performance 1
1.2 Tabletop and tangible 4
1.3 The Reactable 6
1.4 Why music theory on the Reactable is desirable 8
1.5 Implicit learning 9

1.5.1 Music as a natural language 9
1.5.2 Music education 10

2.	 Design	process	 15
2.1 Requirements 15
2.2 The circular accordion 16
2.3 Smaller bits 18
2.4 A step forward in user-friendliness 22
2.5 Final implementation 25

3.	 Doodle:	a	proof	of	concept	implementation	 29
3.1 DoodleSDK 29

3.1.1 Applications and Gesture Recognisers 31
3.1.2 Tangible objects and finger tips 33
3.1.3 Visual feedback 34

3.2 Doodle 36
3.3 Glyph 37
3.4 Glyph Recognition Engines 38

3.4.1 Bézier engine 38
3.4.2 Polygonal engine 39

3.5 Application: Tonalizer 40
3.6 Application: Sequencer 41
3.7 Application: Metronome 43

3.8 Other Gesture Recognisers 43
3.9 Bézier Glyph building tool 44

4.	 Conclusions	 49
4.1 Results 49
4.2 Future developments 50

	 Bibliography	 53

Introduction

With the name “interactive music production systems” we identify those systems for
music production, either musical instruments or other musical tools, based on comput-
ers, having most different interfaces, and requiring interaction with one or more users
in order to fulfil their purpose. This is a rather general description that includes many
different systems, from electronic musical instruments to sequencing and composition
tools. The work hereafter presented is focused on electronic musical instruments based
on tabletop and tangible interaction paradigms, using the Reactable as a case study and
development platform.

In Chapter 1 we’ll see the concept of audiovisual performance and we’ll have a brief
survey about systems that have been designed throughout history for this kind of per-
formance, from early experiments to modern times, ending with a quick yet not too
shallow description of the Reactable itself and its interaction paradigms. We’ll also detail
the motivations for this original work and we’ll see a perspective on music education,
and formulate an hypothesis about how the Reactable, together with the work here
presented, may offer valuable help in the field.

Chapter 2 details the original work presented in this thesis. In this chapter we shall
see all the iterations of the design process, from the first rough ideas to the final proposal,
ready for assessment. We’ll go through each step in the process, explaining in great de-
tail how every single idea was conceived, evaluated and eventually included in the final
proposal, or rejected.

Chapter 3 will present the demo application that was developed, also describing im-
plementation details and practical choices.

Finally, in Chapter 4 we’ll examine results and findings, as well as a number of fu-
ture development proposals, both regarding enhancement that the implementation may
include, and regarding music education and the use that can be made of this work by
people with disabilities.

Disclaimer

This work has been done at the Music Technology Group of Universitat Pompeu Fabra
in Barcelona under supervision of prof. Sergi Jordà. The results here presented reflect my
personal research and opinions on the topic and, although being done in collaboration
with the creators of the Reactable, they don’t necessarily express the opinions and visions
of the original team. Therefore all the developments I propose in this work are to be
considered as a possible direction to be thoroughly examined, evaluated and validated
through experimentation involving potential users of the system.

The latest version of this work will be available at

http://www.morpheu5.net/public/master_thesis/thesis.pdf

http://www.morpheu5.net/public/master_thesis/thesis.pdf

1

Background

What stranger enterprise could be imagined in the whole field of art than to make sound
visible, to make available to the eyes those many pleasures which Music affords to the ears?

Louis-Bertrand Castel (1688-1757)

1.1	 Audiovisual	performance

The idea of “performing light” dates quite back in time, though it’s relatively young com-
pared to the performance of sound in order to produce music. The earliest known device
for performing so-called “visual music” was built in 1734 by a Jesuit priest and math-
ematician, Father Louis-Bertrand Castel (Levin, 2000). Later examples of such devices
appeared during the early twentieth century, like the Clavilux (Thomas Wilfred, first
built in 1919, he also coined the name “Lumia” for this kind of “visual music”) and the
Lumigraph (Oskar Fischinger, patented in 1955, also appeared in sci-fi movie “The Time
Travellers”), the latter being also intended to be performed along with audible music.

In this chapter we’ll briefly describe some of the works about visual interfaces to both
control and integrate music performance in some sense. While they’re not actual exam-
ples of Lumia instruments – which is not what we’re really interested in as far as this the-
sis is concerned – they still control music production through visual interfaces in many
interesting, even entertaining, ways. Then we’ll see how the connection between visual
and audible performance can improve exploration and learning of abstract concepts of
music theory. Finally we’ll describe the Reactable, the platform on which the original
work here presented, and we’ll examine the motivation that lead to the development of
this thesis.

1.1.1	 Music	Mouse

Music Mouse is a software developed by Laurie Spiegel in 1985. It is intended to turn the
computer into a fully fledged musical instrument that can be used in live situations. For
this reason, it doesn’t allow the user to store anything for later playback.

2

Music Mouse uses the mouse as a controller (hence the name) and turns its move-
ments inside a grid into harmony and melody patterns, thus requiring virtually no mu-
sic knowledge to the performer, who can then completely focus on the direction he or
she wanted the performance to take.

The software doesn’t produce any sound on its own, instead its output is made of
MIDI signals that can be redirected to external expanders or the internal synthesizer of
the Macintosh OS – the platform on which it was first developed1.

1.1.2	 Instant	Music

Instant Music is a software developed by Electronic Arts in 1986. Explicitly aimed at
musicians and music lovers, it’s intended to both assist them in creating original music,
and support their performance on other instruments, thus giving an individual control
and support of a full electronic orchestra.

The software interface gives the musician freedom to make variations on songs with
no apparent limit, while a process of correction is actually working in the background
to ensure that no “wrong notes” could ever be played. While this may seem a limit, it’s
actually a point of strength, since it allows inexperienced users to perform music without
having to pay attention to details such as scales and harmony, while allowing experi-

1. Even if it’s been ported to various other platforms, the sole implementation available on a modern and
largely available platform is version 2.1.2 for Mac OS 9. Nonetheless the software seems to be still available
for purchase through Spiegel’s web site: http://retiary.org/ls/programs.html.

Figure 1.1. Music Mouse

http://retiary.org/ls/programs.html

3

enced musicians to overcome this behaviour by using the software as a support while
they freely perform on other instruments.

1.1.3	 Auto	pilot

Arguably the most interesting concept expressed by Music Mouse and Instant Music
is to not let the user make mistakes, where a mistake means playing notes that don’t fit
with the tonality at any given moment.

Also, the idea of freeing the user of the burden of learning one particular instrument
– that also means one particular interface to music – through an “agnostic” and easily
understandable interface makes it easier for unexperienced users to interactively experi-
ence various, mostly subtle, concepts of music theory.

In fact there is some evidence (Seger, 1994) that individuals can learn a big deal of
music theory – as well as other things – by simply being passively exposed to it, though
this learning process is not explicitly supported by a formal description of the concepts.
This process is called implicit learning and we’ll discuss it in section 1.5.

Figure 1.2. Instant Music

4

1.2	 Tabletop	and	tangible

Tabletop, tangible, touch-sensitive and other similar multimodal interfaces are not
new concepts, as they can be found in early research projects, like “Urban Planning
Workbench” in 1999, or even in popular science-fiction like touch-screen lcars in “Star
Trek: The Next Generation”, 1987, or the tangible interface of the Asgard’s computer
core in “Stargate sg-1”, 1994.

In recent years, some effort has been put in using multimodal interfaces for gaming
and music purposes, as we'll see in the following sections.

1.2.1	 Jam-O-Drum

The Jam-O-Drum (Blaine and Perkis, 2000) is mainly, but not exclusively, a gaming
platform for up to four players1, developed in 1998 by a team supervised by Tina Blaine
at Interval Research in Palo Alto, CA. In its most recent version, each player controls a
turntable-like interface with a big push button in the middle. Graphics are projected on
the surface from above and sound is played through speakers in the room.

A number of different games had been developed, like “Bounce About”, a Pong clone
for four players, or “Learn Chinese” in which players cooperate to form Chinese ide-

1. The first version of the Jam-O-Drum allowed up to six or twelve players to play together.

Figure 1.3. Jam-O-Drum

5

ograms that will eventually form a Chinese proverb. Also, a number of audio applica-
tions had been developed but these are usually collaborative games that produce music
as a side effect.

The main focus of the Jam-O-Drum is on games, either collaborative or competitive,
so the most important concept it features is that of multiple users working on the same
device. As we'll see, this is a very important concept when we come to tabletop interac-
tion, as tables are typical examples around which people aggregate.

1.2.2	 Audiopad

The Audiopad (Patten et al., 2002) is an interface for musical performance that com-
bines the modularity of knob-based controls with the expressive possibilities of multidi-
mensional interfaces. Audiopad uses electromagnetic pucks (rfid) as objects associated
with different functions, thus effectively turning a horizontal projection surface into a
musical instrument that replicates the functions of modular synthesizers and samplers.

The Audiopad is slightly more flexible than the Jam-O-Drum, since it can do pretty
much everything the Jam-O-Drum does, plus it’s a complete electronic musical instru-
ment. As we’ll see in the next section, all the concepts we’ve seen so far have been put

Figure 1.4. Audiopad

6

together into the Reactable to some degree, thus making it a complete electronic musical
instrument.

1.3	 The	Reactable

The Reactable is an electronic musical instrument with a tangible tabletop multiuser
interface (Jordà et al., 2007) that’s been developed within the Music Technology Group
at Universitat Pompeu Fabra in Barcelona, Spain. It’s designed as an instrument to
make users explore and create soundscapes in the least possible intimidating way, thus
allowing the widest possible range of users to successfully experiment with sound from
the first moment, no matter what age or musical education level they are. This goal is
achieved by presenting a user interface that adds sight to hearing and touch, thus com-
bining audible and visual feedback to help users better understand and control what’s
happening at any given moment. Arguably, addition of visual feedback is the key point
that makes the Reactable sensibly easier to approach than any other instrument, whose
in turn don’t usually present sound production and control in any different way than by
hearing (see paragraph 1.5.4).

Figure 1.5. Current implementation of Tonalizer in the Reactable. Here we see the object fea-
turing an outer ring in which users select the sole pitch classes they want to be playable, and an

inner half ring in which presets for different configurations of the outer rings are stored.

7

The Reactable is a round translucent table that appears as a backlit display with which
users directly interact using some special objects and their finger tips. Under the surface
it features a fairly complex system made of infrared lamps, mirrors, an infrared-sensitive
high speed camera and a common vga beamer. Infrared lamps illuminate the bottom of
the translucent table surface, thus allowing “inactive” areas to be ignored while “active”
ones – such as fingers and tangibles – reflect the light and are captured by the camera.
The captured video stream is then processed by a computer using reactivision, which
extracts descriptors of the various objects it can recognize, and stream them over the
network1 to both the audio and visual synthesizers.

Both the synthesizers use the data sent by reactivision to produce audible and visual
feedbacks. While sounds are simply played through a sound card, visual output is pro-
jected on the surface using the vga beamer that’s inside the table.

1.3.1	 Fingers	and	tangibles

Most of the large multi-touch tables and screens nowadays available employ an interac-
tion paradigm based on finger gestures. Users can manipulate visual objects on the screen

1. tuio (Tangible User Interface Objects) encapsulated in Open Sound Control and streamed over udp.

Figure 1.6. Current implementation of Sequencer in the Reactable. Here we see the Sequencer
sending notes to a “plucked strings synthesizer”. Around the Sequencer we see an upper half
ring for volume control and a lower half ring for melodies that must be stored in advance.

8

by “touching” them, dragging them around, enlarging or reducing their size and much
more. The Reactable sticks to this paradigm while extending it through the introduction
of objects that can be physically grasped by hand, put on the table, moved around and
eventually removed when they’re no longer necessary. These so-called “tangibles” are
identified and tracked by reactivision, the open source computer vision engine that sits
between users and Reactable’s proprietary audio and video synthesizers. This software
identifies and tracks special fiduciary markers attached to the tangibles, so that various
parameters – such as position, orientation, linear and angular speed – can be extracted.
Each distinct fiduciary marker is associated with a different function, for example sound
generators (i.e. noise, waveforms, physical modelling), filters (i.e. low/high/band-pass,
resonating), modulators (i.e. lfo), audio samples, etc. These building blocks make the
Reactable an almost-full featured “analog synthesizer”. Some of these parameters are
linked to position and rotation of the associated tangible, while others are controlled via
finger interaction with a minimal gui that’s presented around the object, in some sort of
“augmented reality” fashion. For example, a sine wave generator controls frequency by
rotation and amplitude via a gauge put around it.

The strength of this approach is that users have a real grip on what’s going on with
the production of sound, thus making the Reactable a more realistic musical instru-
ment, while freeing the user from the responsibility of continuously controlling sound
emission, since it’s automatically generated, thus allowing him or her to concentrate on
performance direction.

For a full description of other objects and functions, see Jordà, Geiger, Alonso and
Kaltenbrunner (2007).

1.4	 Why	music	theory	on	the	Reactable	is	desirable

The Reactable has been originally thought and developed as an instrument for free ex-
ploration and production of soundscapes, a way for experimenting with electronic mu-
sic without being bound to any music heritage, therefore it allows manipulation of every
sound parameter, be it pitch, volume, timing and so on.

During its development, it started to gain international fame, mostly over the Internet
thanks to some videos that explained the basic functions of the instrument. Musicians
started to experiment with it and some of them could even bring it to their stage per-
formances. In 2006, icelandic singer-songwriter Björk decided to have one in her “Volta”
tour, even if it hasn’t been actually used to its full potential, but for playing prerecorded
loops with a high choreographic value.

“Traditional” musicians started to feel that all this freedom of control over parameters
was more a limit than an opportunity, after all even the early analog synthesizers had a

9

way to play pitch classes with a keyboard. In response to this, a set of objects was devel-
oped. It consisted of a very simple midi sequencer (that played preloaded melodies) and
an object, called Tonalizer, that was intended to limit what frequencies the tone genera-
tors were able to play, thus effectively binding them to pitch classes of western tonal
music. Since the original team didn’t feel this was a feature they wanted, they decided to
develop it at the minimum level of usability and then leave it as it was.

The work here presented has to date a lot of unexpressed potential that shall be prop-
erly explored and evaluated as development continues. It can turn the Reactable into a
complex yet easy tool for improvisation and composition, as much as Music Mouse did
with personal computers; it can also turn it into a composition tool that can support
performance of other musicians1, given an appropriate interface with musicians, like
Instant Music, or even with other similar instruments. It can also turn the Reactable into
a learning aid for music students, as we’ll see in the next section.

1.5	 Implicit	learning

Implicit learning is the process through which an individual becomes sensitive to the
underlaying regularities of highly structured systems, like language or music. Even if
such knowledge remains at a level such that one is not able to explicitly describe them,
it influences perception and interaction with the environment (Seger, 1994). The most
prominent real life example of implicit learning is of course natural language. Babies
learn to speak at an early age, first by merely imitating sounds produced by other people,
then by learning how concatenation of such sounds conveys a message through sen-
tences. But the first time they explicitly understand how those sentences are composed
and why different sentences mean different things is at school, where they’re formally
taught the rules of language through reading and writing.

For an in-depth discussion on implicit learning, see Bigand, Lalitte, and Tillmann
(2008) and Seger (1994).

1.5.1	 Music	as	a	natural	language

It’s been argued that the origin of music itself may be similar to that of natural languages
(Molino, 2000). Considering music as a natural language would then mean that it has
its own set of symbols, words and sentences, all tied together by a grammar, that is the
set of rules of a given musical system. In this sense, each musical system is a different
natural language as much as English and Italian are different natural languages. Also,
generative grammar approaches have been used in musicology for analysis of musical

1. e.g. tonalizer based on scale modality, automatic progression generation, algorithmic solo improvisation…

10

pieces (Ruwert and Everist, 1987) though the idea of a “universal grammar”1 has not
received much consensus, while the evidence of specialized grammars per author or per
period is much more accepted.

Indulging in the hypothesis of music as a natural language, we can also assume the
existence of a transformational grammar that allows people not only to understand new
meaningful sentences and reject those that don’t make sense, but also to produce new,
possibly never heard before, meaningful sentences. For more information on generative
and transformational grammars, and their relationship with origin and understanding
of language, see (Chomsky, 1965).

Assuming that this hypothesis holds, it is then reasonable to suppose that all the con-
cepts already developed for natural languages may hold for music too, thus the following
discussion will make sense.

1.5.2	 Music	education

Music is traditionally taught by teaching how to play a particular instrument – that is
the experience of sound – while also using it to teach the underlaying rules in a formal
way. This approach allows students to learn music theory by direct experience on a cho-
sen musical instrument. On the other hand, this approach forces students to learn two
nontrivial matters at the same time, possibly inducing a bias towards the chosen instru-
ment, given the fact that not all instruments have the same possibilities – e.g. piano is
a complete harmonic and melodic instrument, while trumpet is just a melodic instru-
ment2; also some special rules developed for church organ are quite different from those
developed for piano.

To reduce the complexity given by learning two complex matters at the same time,
it seems reasonable to separate these two tasks, and possibly perform them in sequence.
While it is not feasible to proficiently learn how to play an instrument without learning
even basic rules of music theory, it may be the other way. A student can learn a lot of
abstract concepts that can then be applied to any specific instrument at the sole cost of
actually learning to play it – that is learning the technology behind it. This may – or
may not, it should be properly evaluated – reduce the time required to learn how to play
an instrument, similarly to how already knowing an instrument usually reduces time to
learn an additional instrument.

1. The term “universal” most reasonably refers to all music compositions under a single harmony system
instead of a grammar that describes all the possible harmony systems, the latter being a fascinating hypoth-
esis, though still unproven.

2. This, among other reasons, is why piano is often taught as a complementary instrument. We are not
implying that learning piano is a bad thing on its own, it just adds complexity to the study of the primary
instrument.

11

1.5.3	 An	easy,	non-intimidating,	musical	instrument

What we lack now is a way to effectively practice those abstract concepts that music
theory is made of3. As we’ve seen, we can assume that most of these concepts, even subtle
ones, have already been implicitly learnt by students. What we actually need is a way to
explicitly express them without forcing students to master a traditional musical instru-
ment, which can be either a delightful or excruciatingly painful experience, depending
on the student’s attitude towards the instrument and its study. As we’ve seen in section
1.3, the Reactable is an intuitive, easy to play, and – most important – non-intimidating
musical instrument by design.

As it’s detailed in (Bigand et al., 2008), regularities and relations between tones, scales,
chords, etc, are important when it comes to implicit learning, and learning in general.
This is the key point they use to argue that learning western tonal music can be opti-
mised and improved using multimedia tools that emphasize such structures.

The work presented in this thesis aims at giving the Reactable a way to perform with
music theory, thus turning it into a musical instrument in a more traditional sense, by
integrating notions of musical structures and presenting them as an optional operating
mode. The intuitive and easily graspable interface of the Reactable makes it a perfect
candidate to give students the ability to experience musical concepts by reducing the
complexity of learning a traditional musical instrument, while leveraging on the im-
plicit experience of music theory one may have unconsciously acquired. However it is
clear that this thesis builds upon the existing Reactable so at any moment it’s possible
to simply ignore all the music theory framework and revert to the original “agnostic”
behaviour of the instrument, if desired.

It’s also worth noting that even if Bigand et al. only analyse western music theory, it
can be argued that regularities and relations between other cultures’ notions of musical
structures exist, though they can be quite different from those existing in western music.
However, if a tool is properly designed to be flexible and extendable enough, it should
also be easy to adapt it to different rules, and this is one of the main goals that drove the
design process we are going to detail in Chapter 2.

1.5.4	 Visual	feedback

Arguably the key point in making the Reactable so immediate to approach that even
infants can play with it is the visual feedback users are given about the running proc-
esses at any given moment. In fact, since visual exposure is much more constant and
thorough during life than music exposure is, shape and visual pattern recognition be-

3. There is much empirical evidence that exercise teaches much more than simply watching or listening
someone else exercising. Even if abstract concepts can be learnt at a subconscious level by simple exposure,
it seems reasonable that explicit formalization of concepts may be easier by practically experiencing them
on an instrument.

12

comes a granted, automatic and quite sophisticated skill – for non-blind people. Also,
coordination between sight and action is usually more natural and sophisticated to most
people, where coordination between sound and gesture is a process that evolution put
at quite a low level, mostly connected with reaction to immediate dangers, survival and
functional communication. In this sense, the Reactable makes of visual feedback a point
of strength when it comes to controlling sound and music.

On the other hand, visual feedback has a subtle drawback, that is information over-
load. A badly designed interface can present too little or too much information. While
presenting too little information usually does no harm other than limiting users’ knowl-
edge about sound production processes – which is actually what traditional musical in-
struments do – giving too much information may induce confusion in users and clutter
the visual interface at a point that it’s not usable anymore.

A lot of care has been put into good design in the Reactable, and the work here pre-
sented tries to adhere to those principles by presenting the most minimal yet expressive
and intuitive interface possible to easily explore the widest possible range of the system’s
capabilities.

2

Design process

This chapter documents the phases of the project. First, we’ll review the requirements
of the project, then we’ll go through the design process by seeing every idea in order
of appearance, we’ll point out the reasons for every choice, we’ll detail both strong and
weak points of every idea and see why some of them made it to the final concept while
some other died trying.

2.1	 Requirements

The basic, most important requirement that sits behind all this work is that of having a
way to bring western tonal harmony on the Reactable, and making it possible to control
the way other sound-generating objects work, for example by restricting the frequen-
cies of a sine-wave generator from a “continuous” spectrum to a set of pitch-classes.
Although not originally required, the system has been designed to not be restricted to
western tonal music, but to support a generic tonal system, as we’ll note in subsection
2.4.1.

The second requirement is to present the user with an interface to modify the be-
haviour of the Reactable in order to fit a given tonal system and allow to explore, com-
bine and take advantage of the harmony’s rules in order to support or even create a
performance.

Last but not least, the resulting system should present a minimalist and intuitive
yet complete and powerful interface to achieve its goals. This is most important when
thinking about Reactable’s target users, since its main design goal is to be an easy, non-
intimidating musical instrument that anyone can approach and start achieving appreci-
able results in very little time and with virtually no musical knowledge. Also it’s impor-
tant when thinking about aid to music education, as discussed in the previous chapter.

16

2.2	 The	circular	accordion

The very first idea was the object shown in figure 2.1. The circle in the middle holds
place for the tangible object and the rings around it are the actual interface. It is a very
compact design that integrates both the tonalizer and the melodic sequencer within a
single object. As we shall see, less is not always more, and all this compactness eventually
proved to be quite a poor solution with a few very big problems.

2.2.1	 How	it	works

The basic idea behind the rings is that each ring is a step in a sequence advanced by an
external step sequencer. This sequence represents either a chord progression or a melody.
The innermost ring is the first one in the sequence while the outermost is the last one,
and there can be arbitrarily many rings, thus allowing to build sequences of different
lengths. The rings are divided into twelve sectors that represent the twelve half-tones
of the chromatic scale1 and they can be rotated in order to align different keys that can
make up either a progression or a melody, thus allowing to select such a sequence with a
gesture as simple as a straight stroke from inside to outside. In figure 2.1, if we see the red

1. Here we use the western chromatic scale as a reference but it’s worth noting that this design is also suit-
able for the Shi Er Lü (Chinese chromatic scale) or the Sagram (Indian solfege) with no modifications in
the interface (see §2.4.1).

Figure 2.1. circular accordion

17

keys as C, and the light and dark keys as the white and black keys on a piano keyboard,
we can easily see that the keys are aligned with a major third interval between the first
and the second ring, and with a minor third interval between the second and the third
ring. If we draw a stroke starting from a key of the innermost ring and going along an
ideal radius of the circle, we clearly see that we can make either a I-III-V progression, if
we are working with chords, or the corresponding arpeggio, if we are working with notes.

2.2.2	 How	it	fails

The big issue with this design is that it really tries to solve the whole problem with a
single object. Although this may seem an elegant and compact solution, sometimes less
is not more. Let's see how this design is not a viable solution.
1. As the sequences become longer, the interface tends to grow very quickly in size, and

take up most of the space on the table. Although this space is not physical and can
be redeemed by hiding the interface when it’s not being used – not to mention that
it can even be cleverly reduced during editing – working with sequences of as little as
six or eight steps may still become inconvenient. In fact, at any given time, the visual
interface may intersect with other objects, both tangible and visual.

2. When editing a chord progression, there’s no obvious way to select a particular mode
for a given ring (e.g. major, minor, seventh…) as well as to choose a scale that fits a
given tonality.

Figure 2.2. second iteration of the tonalizer (play mode).

18

3. It relies almost completely on an external timing device, namely a step sequencer.
While this is not a bad thing at all, we’ll see later that there are a number of things
that can be done with internal timing, using an external step sequencer just as a tim-
ing reference.

2.3	 Smaller	bits

The second iteration proves that, sometimes, less is actually more. Notably, this time the
proposal involves splitting the “circular accordion” in two parts: one dealing with chords,
and the other dealing with melodies. This way, while it actually has “more” objects, we
have them solving “less” – and smaller – problems each. Not only this makes things
easier to deal with, but also allows for more sophisticated control associated with each
object.

2.3.1	 Tonalizer

The second iteration of the tonalizer is shown in figure 2.2. The first notable thing is that
it still carries one ring of keys around the tangible object. The second thing is that it only
carries one ring of keys around the tangible, and it also has less keys than the accordion.
There is nothing wrong with having twelve keys around the object, but this time the
keys are not related to notes in scales: in fact, they are slots in a sequence, and each slot
accounts for a chord. This means that we can have eight as well as four or sixteen slots
around the object, and this amount limits the maximum length of a sequence at a given

Figure 2.3. second iteration of the tonalizer (slot editing mode).

19

time1. Another notable thing is that the slots can either be active or not. In figure 2.2 the
inactive slots are the darker ones, the active slots are those slightly lighter and the single
brightest slot is the one that’s currently being played. In this iteration of the tonalizer, a
sequence can be of any desired length, in fact, even if practical limits still exist, it is a lot
longer than before. Moreover, this arrangement also allows for more intuitive reorder-
ing of the sequence by dragging slots in the desired positions, and only active slots are
actually used in the sequence, while inactive ones are simply skipped. This allows for
arbitrarily long sequences up to the number of available slots around the tangible.

Figure 2.3 shows the tonalizer while editing a given slot: in this case it is shown editing
the active slot, but any other slot can be edited, and even more than one may be edited at
the same moment. Changing the chord of a particular slot influences behaviour of those
objects that rely on it (e.g. the melodic sequencer) whenever that slot becomes active. As
we can see, editing of a slot can be performed with a number of different interfaces: for
example, on the left side we see a piano-like keyboard on which the user simply chooses
the notes and makes up the desired chord, while on the right side we see a harmonic
table arrangement that still represents the same amount of notes of the piano-like key-
board while providing a far more compact design.

2.3.2	 Melodic	sequencer

The other object resulting from the split of the circular accordion is the melodic se-
quencer presented in figure 2.4. When it’s operating in play mode, it looks just like the
tonalizer described above, and the ring of keys behaves pretty much in the same way.
The only difference is when the object is put in edit mode. The grid interface shown in
figure 2.4 represents a “measure”, here divided in eight beats of equal duration, and five

1. While theoretically there’s no limit to the amount of slots around the tonalizer, with this representation
there’s a practical limit given by the resolution of the beamer, the size of the tangible, and the minimum size
of a blob to be effectively recognised as a finger.

Figure 2.4. second iteration of the melodic sequencer (editing mode).

20

rows that represent the notes that the user can choose to compose melodies.
The most interesting part of this design is the way it exploits information given by the

tonalizer to give users a safe way to compose “correct” melodies, where “wrong” melo-
dies are those made of notes that “sound wrong” with a given chord. The key point is
essentially based on the fact that a given chord imposes a tonality and there are scales in
that tonality that don’t contain notes that would be inharmonious when played together
with that chord. For example, if we’re given a major scale and we play the 7th or dimin-
ished 5th along with the corresponding major chord, we create a tension. While this is
a legitimate artistic choice when consciously made by a skilled composer that knows
exactly how to deal with and resolve such tensions, it is also something that comes unex-
pected to the listener – and that’s what makes music interesting – but it’s also perceived
as an error when improperly used. The naïve solution is to not permit the casual user
to make such “mistakes” while still giving the skilled performer the chance to play eve-
rything it’s felt appropriate at any given moment. How exactly the system decides what
scales fit a given chord is an implementation detail (see Chapter 3).

The grid featured in figure 2.4 is a measure divided in eight beats and five notes: this
means that it has a resolution of ⅛th and a pentatonic scale (either major or minor,
depending on the tonality). The way users can compose melodies is by drawing strokes
and taps with their fingers. The strokes are then analysed and some predefined signifi-
cant points1 are used for triggering on and off the notes on the grid. This results in an
extremely playful yet powerful interface to a rather complex task like music composition.

Regarding the relationship between melody and chord slots, there can be at least two
levels of binding, here discussed by increasing complexity.
1. The sequences are strictly coupled: both objects have the same maximum amount of

slots, and both sequences have the same length. Activating or deactivating a slot trig-
gers the same action on its corresponding slot in the other sequence, and if a sequence
is reordered, so is the other.

2. The sequences are loosely coupled: each object can have a different maximum amount
of slots, and each sequence can be of any length. Both the sequences are advanced
as usual and each time one sequence reaches its end, it is looped. Due to the length
difference, this behaviour can lead to both interesting and unexpected scenarios in
which a melody is played over a different chord than the one over which it was com-
posed, and possibly even a different scale.

It's worth noting that there’s still the possibility to put on hold the advancement of one
or both the sequences, thus either making the same melody play with different chords,
or making the same chord serve as a basis for different melodies. This, combined with

1. For example taps, or “zero-derivative” points where the derivative is relative to the time axis of the grid,
or points where the finger slowed down for a while, etc…

21

the latter scenario, opens for an interesting challenge. Each time a chord is modified, or
even a different melody/chord pair is put together, the set of feasible scales is possibly
different. While some scales currently in the set associated with the old chord can still
fit the new chord, others may not, and even new ones may come into play. If a melody
is composed on a certain scale and the new chord doesn’t fit that scale anymore, we may
take two actions: completely discard the melody, or try to adapt it to one of the new
scales that fit the new chord. The first action is the most simple to implement but it has
the disadvantage of taking a possibly unexpected choice with which the user may disa-
gree. The second choice opens for a very interesting challenge, that is how to translate
the melody to fit one of the new scales. Among the possible solutions, these two may be
the most interesting yet difficult to pursue.
1. The raw user’s input (i.e. the strokes and taps) may be kept in order to “replay” the

gestures over the new scale. Now the problem is whether to adapt the gesture to the
new size of the interface, or to leave it unchanged and just replay it over the interface
– thus also having to decide how to align the gesture with the new interface and what
to do if it exceeds the bounding box.

2. The melody may be transposed to the new scale using a set of rules that tries to mini-
mize the difference between the old and the new melody. This set of rules should
come from the underlying music theory.

Both cases may either ask the performer to choose the target scale or automatically select
one among the “most similar” ones to the original scale. While both these solutions are
probably the most “correct” regarding user expectation, they are quite complex and diffi-
cult to implement. Given the small amount of time the first naïve approach of throwing
the melody away has actually been adopted for the demo application, while the whole
“adaptive melody” concept will be considered as a future development.

2.3.3	 Disadvantages

The major disadvantage with this iteration of the tonalizer is that it still requires some
knowledge of music theory. In fact, the chords are specified via single notes on some
kind of keyboard interface. The only real improvement over the existing tonalizer is the
one related with inferring and using tonality and scales to give hints to the relevant ob-
jects, which is interesting indeed, but unfortunately it’s not very much.

The other disadvantage of this second iteration is that both the objects may rely too
much on an external timing device. Although this is of arguable use with the tonalizer,
the melodic sequencer has no way to express different durations other than by relying
on a properly designed step sequencer. More generally, a real step sequencer is not really
useful on the Reactable, while a timing reference object (like a metronome) is definitely
more useful – not to mention that it already exists.

22

2.4	 A	step	forward	in	user-friendliness

The third iteration tries to solve both the major disadvantages we’ve just seen. Most of
the work has been done on the tonalizer, introducing a completely different input para-
digm, which exploits the tactile interface to give the user a more natural, and even more
abstract, way of choosing chords. On the other hand, the melodic sequencer enjoys a
minor yet important improvement which greatly increases its flexibility while also re-
moving the need for an overly sophisticated step sequencer.

2.4.1	 Tonalizer

The problem with requiring some knowledge of music theory is not with the level of
knowledge required, but with the requirement itself. If we want the tonalizer to be an
effective tool for the unexperienced user to experiment, enjoy, and eventually learn some
concepts of music theory, the level of knowledge required should ideally be zero. The
tactile input paradigm is an extremely powerful yet immediate mean of interaction and,
as we’ll see, the level of knowledge that we will require is way more basic than the most

Figure 2.5. third iteration of the tonalizer (editing mode).

23

basic level of music knowledge.
The third iteration of the tonalizer shown in figure 2.5 features handwriting recog-

nition. Given the example depicted in figure 2.5, it may seem that some strong as-
sumptions are taken: Latin alphabet, Arab digits, Anglo-Saxon conventions for chord
notation, etc. In fact, this is not the case at all. The power of this approach is that it is
flexible: any kind of symbols, like existing alphabets, music notations, or even artificially
constructed sets of symbols can be implemented. For example, it may be interesting
to implement abstract symbols, taking advantage of the natural ability of the brain to
recognize and re-create shapes and figures, thus separating the task of experimenting
with music theory from the task of learning and using specific notation systems that are
usually tied to specific languages and cultures. This may also prove particularly effec-
tive when the instrument is explicitly used to teach the basics of music theory, since it
relieves the student of the burden of a specific set of conventions.

Finally, it’s worth saying a word about handwriting recognition methodology. Figure
2.5 features a single-stroke glyph-based variant, a concept quite similar to the one found
in early Palm PDAs. The demo application actually features this kind of algorithm,
based on modelling a single-stroke Bézier curve of arbitrarily high degree out of user’s
input, and matching it with a set of prebuilt models. This is probably the most naïve
algorithm that still retains a sufficient degree of flexibility, since it has to be both posi-
tion and rotation independent. The handwriting recognition system1 is designed to be as
flexible as possible, so any kind of sophisticated methods – from very simple approaches
to highly advanced algorithms involving artificial intelligence or computer vision – can
be implemented.

Figure 2.5 actually features two objects. The one at the top is the tonalizer as we al-
ready know it. It still has the ring of slots around it2 and it also features handwriting rec-
ognition. The object at the bottom is a sort of cadence chooser. This object works as an
auto-pilot for the user who doesn’t want to put much effort in creating a chord progres-
sion, but wants to concentrate on other aspects of the performance. The core idea is that
the user selects a single chord on the tonalizer and then chooses a “style” from the other
object. Then the style object creates an entire progression taking the chosen chord as
the base key. For example, figure 2.5 features a twelve-bar blues progression in GG – the
7th is discarded as it makes no sense3. Both the objects feature handwriting recognition
using the single-stroke glyph-based approach mentioned above, but, while the tonalizer

1. As we’ll see in Chapter 3, the entire demo application is based on plug-ins.

2. It doesn’t appear obvious how a specific slot is edited. This issue is addressed in the final iteration, which
is the prototype that is implemented in the demo application.

3. Probably a jazz turnaround like HIII7-ii-V-(I) would have made more sense with this figure, but it’s not
really a complete progression, thus making a bad example.

24

uses a direct constructive approach, the other object features a list oriented selection
paradigm, in which the first possible choice is shown in some sort of auto-completion
interface, and the others, when appropriate, can be chosen by expanding the list.

Another option has been considered, that is the inclusion of a “legacy mode” in
which, for each chord in the sequence, the tonalizer reverts to the current interface that
displays the ring with twelve keys and lets the user edit the chord note by note. Even if it
may seem a great benefit for the musically skilled user, it still poses an ambiguity about
how to interpret the chosen set of notes. For example, if the user selects a major triad, it
is not clear whether the system should use just those three notes, like the original tonal-
izer does, or if it should detect a major chord and behave like the new version that’s been
designed so far. For this reason, the “legacy mode” has been discarded.

2.4.2	 Melodic	sequencer

As it is clear from figure 2.6, the melodic sequencer has not been subject to deep modi-
fications. The only difference with the previous iteration is the possibility to specify

Figure 2.6. third iteration of the melodic sequencer (editing mode).

25

different durations for the columns of the grid. This completely removes the need for
a step sequencer, allowing for a more general metronome-like device to be used as a
beat reference, thus requiring the step sequencer to be implemented inside the melodic
sequencer. The advantage is quite clear: using the simple gestures depicted in figure 2.6,
the user is able to create melodies of increasing complexity. The two major drawbacks of
this approach, even if they are in fact rather minor, are that
1. it may be possible to create unusual durations, like triplets, that the user may be

uncomfortable with, and
2. there’s no way to create polyphonic melodies with different durations within the

same object.
The solution to the first drawback may be as simple as the creation of an invisible under-
lying grid on which to snap the split points. For the second drawback, either a user may
put on the table more than one melodic sequencer associated with the same tonalizer,
or a possibly quite complex three-dimensional interface can be developed. The former
solution is arguably the most feasible one, as it doesn’t require any additional effort to
be implemented.

2.5	 Final	implementation

Most of the concepts so far discussed have been kept, while some had to be excluded by
the final iteration or the demo application due to many reasons, most notably for not
being practical or for requiring more time than available for implementation.

While the melodic sequencer hasn’t had any modification since the third iteration, it
features some notable differences in the demo implementation: it hasn’t the possibility
to create columns of different durations, and there’s no explicit way to choose a specific
scale from the list of those that fit the current chord. In fact, even if all the possible scales
are actually computed, the first one in the list is presented to the user.

On the other hand, early tests revealed that the naïve algorithm for handwriting rec-
ognition wasn’t always reliable. This is most probably due to the unrefined implementa-

46

7

9

m M

#

b
Cmaj6/9

Figure 2.7. the chord widget, for direct editing of chords.

26

tion of the demo application, possibly combined with the low resolution of the video
camera. Moreover, time constraints prevented the development of a more sophisticated,
and invisible, interface for chord manipulation. For all these reasons, the chord widget
shown in figure 2.7 has been developed. It serves the two purposes of clearly display-
ing the chord being edited and of permitting direct, more precise, manipulation of the
chord it represents.

It is interesting to note that, since there can be more than one such widget on the
table at the same time, more than one user can edit the chords in the sequence, even if
only one of them can edit chords via handwriting. This is because it is not clear how to
associate a stroke to the chord that the user wants to manipulate. At this point, further
research and evaluation are needed to clarify both the usefulness of having a separate
chord widget, and how to associate strokes with chords.

3

Doodle: a proof of concept

implementation

After the design phase described in Chapter 2, a demo application was developed in
order to effectively evaluate and assess the project. The result is a project called Doodle
which is logically divided into sub-projects.
Doodle: this is the main application that acts as a supervisor, makes communication

between components possible and also produces visual feedback for projection on
the table surface. Doodle is actually split into a sdk which is necessary for effective
code reuse, and the actual application, as we shall see in sections 3.1 and 3.2.

Glyph: this is the gesture recogniser responsible for handwriting recognition, as ex-
plained in section 2.4.1. It features a plug-in architecture for handwriting recogni-
tion engines and it even masks internal Doodle details, like Cursors, in order to
allow development of engines without depending on Doodle. In order to dem-
onstrate the architecture, two plug-ins were developed, as we'll see in section 3.4.

Tonalizer and Sequencer: these are the applications that have been discussed in Chapter
2. We'll see implementation details in sections 3.5 and 3.6.

3.1	 DoodleSDK

As it turned out, the Reactable implementation available at the time this work was de-
veloped was a mixture of various components written in many different languages, like
Java, Pure Data, c++, and so on. Although it is not impossible to develop an add-on, it
is just impractical to do so with little knowledge of the system and little time to work,
so the best solution was to work from scratch, directly using reactivision and the tuio
c++ library. For this reason Doodle was designed from the ground up as a general c++
framework for tabletop applications with a tangible and multi-touch interface.

Doodle features a plug-in architecture that’s used to develop applications – i.e. ob-
jects that gather information from the environment, communicate with each others,

30

Do
od

le
::I

Ap
pl

ic
at

io
n

«i
nt

er
fa

ce
»

+
de

cl
ar

eO
bj

ec
ts

()
+

de
cl

ar
eG

es
tu

re
Re

co
gn

ize
rs

()
+

de
cl

ar
eW

id
ge

ts
()

+
pr

oc
es

sR
es

ul
ts

()
+

pr
oc

es
sM

es
sa

ge
s(

)

Do
od

le
::A

pp
lic

at
io

n

+
tu

io
Cy

cl
e(

)

Do
od

le
::T

on
al

iz
er

Do
od

le
::S

eq
ue

nc
er

Do
od

le
::M

et
ro

no
m

e

Do
od

le
::I

Ge
st

ur
eR

ec
og

ni
ze

r
«i

nt
er

fa
ce

»

+
fe

ed
Gr

ou
p(

)
+

re
co

gn
ize

()
Do

od
le

::G
ly

ph

-_
en

gi
ne

Do
od

le
::M

ul
tiT

ap

Do
od

le
::S

tr
ai

gh
tS

tr
ok

e

Do
od

le
::M

us
ic

To
uc

h

Do
od

le
::P

in
ch

Gl
yp

h:
:IG

ly
ph

En
gi

ne
«i

nt
er

fa
ce

»

+
re

co
gn

ize
()

Gl
yp

h:
:B

ez
ie

rG
ly

ph
En

gi
ne

Gl
yp

h:
:P

ol
yG

ly
ph

En
gi

ne
Do

od
le

::W
id

ge
t

«i
nt

er
fa

ce
»

+
re

nd
er

()
Do

od
le

::K
ey

bo
ar

dW
id

ge
t

Do
od

le
::C

ho
rd

W
id

ge
t

Do
od

le
::T

ar
ge

t

Do
od

le
::C

ur
so

r
Do

od
le

::T
an

gi
bl

e

+
be

at
()

Figure 3.1. Simplified class diagram for project Doodle.
It's important to note that colours are used for better legibility, not for stereotyping.

31

and even produce audible output – and gesture recognisers – i.e. objects whose purpose
is to analyse the gestures performed by users with their fingers and communicate the
results to applications. The project was developed with Nokia Qt Framework 4.5. The
positive aspect of this choice is that Qt Framework is a widespread, well known, cross-
platform and stl-compatible c++ framework for desktop and embedded applications,
and the key point that led to its choice is the simplicity of its plug-in infrastructure, as
opposed to the wide range of different solutions for dynamic object linking on different
platforms.

The downside of this choice is that Qt Framework 4.5 does not support typical multi-
touch features like gesture recognition and multiple pointers, while latest stable release
4.6, though it was unavailable at the time, does. For this reason, such infrastructure
had to be developed, and much care was put into design in order to make it as much
adherent as possible to Qt’s guidelines, so that a port from 4.5 to 4.6 should not require
much work.

A simplified class diagram of the project is presented in figure Figure 3.1. This diagram
only details the most important features of each class, namely methods and proper-
ties, while keeping inheritance and dependency information intact, thus presenting the
whole project in a meaningful yet compact form.

3.1.1	 Applications	and	Gesture	Recognisers

Qt’s plug-in infrastructure (Nokia Corp., 2009) requires an interface to be declared in
order to know how to load and link objects, and concrete plug-ins need to implement
that interface.

IApplication is the interface to develop Doodle Applications. These applications are
the building blocks of a tangible tabletop application based on Doodle. Examples of
Doodle Applications include waveform generators, LFOs, band-pass filters, or anything
else that needs to interact with other Doodle Applications in order to manipulate their
behaviour and gather information from the environment, for example from gesture
recognisers.

A Doodle Application may declare three lists.
Tangible objects: it is the list of the Tangible objects the application wants to man-

age and monitor. For example, the Tonalizer application declares the Tonalizer
Tangible object.

Gesture Recognisers: it is the list of the gesture recognisers whose results the applica-
tion is interested in. For example, the Sequencer application declares MusicTouch,
MultiTap, and StraightStroke.

Widgets: it is the list of the Widgets the application is supposed to provide for visual
feedback. For example, the Sequencer application declares KeyboardWidget.

These lists contain the explicit names of the objects. This way Doodle can automatically

32

associate default signals and slots1 every time a component enters the system. A Doodle
Application features slots for processing results from gesture recognisers, messages from
other applications and any event concerning Tangible objects, and it sends messages to
other applications by emitting signals itself.

IGestureRecogniser is the interface to develop gesture recognisers. When a Group
of Traces (section 3.1.2) is finalised, it is fed to all the gesture recognisers available for
processing. When the processing phase ends each gesture recogniser may emit a signal
with the result – or may even not, it depends on single cases, for example if the recogni-
tion phase fails. At this point, all the Doodle Applications that requested a particular
gesture recogniser receive the emitted signal and start their processing phases. Gesture
recognisers also have priorities that can be configured through the main XML file. It
is not mandatory for applications to follow these priorities, though. In fact, single ap-
plications can even decide to completely ignore them and implement their own priority
scheme. Last but not least, it is worth noting that a progressive gesture recogniser is
continuously fed with Groups every time they are updated (that is every time one of
their Cursors are updated).

1. For an overview on signals and slots in Qt see (Nokia Corp., 2009).

Figure 3.2. a single Trace made of a single Stroke

33

3.1.2	 Tangible	objects	and	finger	tips

tuio protocol describes tangible objects and cursors as targets. The tuio c++ library
provides an interface that receives such objects from an udp stream and converts them
to c++ objects. These objects are then passed to client applications as pointers. A major
issue that emerged during development is that, at apparently random times, these point-
ers seemed to vanish, thus producing unwanted effects like dangling pointers and null
references. This was reported to author Martin Kaltenbrunner, who carefully verified
the sources and confirmed that some bugs were indeed present. Unfortunately, even
after these bugs were corrected, the same misbehaviour occurred, even if at an extremely
lower rate than before. For all practical purposes, it was decided that the best solution
was to clone these objects as soon as they were available and make them locally available
to Doodle until they were no longer necessary. This effectively solved the problem of
dangling pointers.

Class Target is a prototype from which both classes Tangible and Cursor inherit basic
properties, extending them where needed. For example, Tangible objects have a fiduci-
ary ID attached to their bottom, while Cursors have a finger ID as specified by tuio
protocol. While motion of Tangible objects is of no particular interest in this case, and
so its evolution can be tracked in real-time and then discarded, fingers are typically used
to draw strokes that form complex gestures that need to be analysed both in real-time
and at completion time. For this reason a set of classes has been developed.

Figure 3.3. a Group of Traces

34

Stroke: this class records a single Cursor motion, from the moment it appears to the
moment it dies. Each point of the stroke is a tuio Cursor, and so it has all the
relevant properties like position, speed and acceleration.

Trace: at times, a finger can move so fast that reactivision loses track of it. A Trace is a
sequence of Strokes used to close gaps between them. Two Strokes are considered
to be related when the first point of the second Stroke is nearby the last point of
the first Stroke. Also, these two points need to be close in time, otherwise the Trace
is considered no longer active and cannot be resumed anymore.

Group: complex gestures are made of more than one related Traces, and a set of such
Traces is a Group. Two or more Traces are said to be related when, for example,
they appear nearby to each other or they’re over the same visual target.

3.1.3	 Visual	feedback

Although Qt Framework 4.5 did support QWidgets to be painted into a dynamic tex-
ture, which is used in the Viewport of Doodle as we’ll see in the section 3.2, it still didn’t
support multiple cursors and complex gestures, so direct multi-touch interaction with
QWidgets was not possible. It was then decided to develop a set of Widgets with such
characteristics. It shall be noted that these Widgets are QObjects, so they comply with
Qt’s guidelines, thus making it easier to port DoodleSDK to Qt 4.6. It's worth noting

Figure 3.4. two Traces each belonging to a different Group,
as shown by the different colours of the Cursors.

35

that QWidgets support custom painting and custom slots, so it is possible to create new
widgets with custom appearance and behaviour simply by extending the QWidget class.

In addition to the Doodle::Widget base class, a small number of common Widgets
were developed, namely LabelWidget, PushButtonWidget and CheckButtonWidget,
whose properties and behaviour are documented inside the code.

Last but not least, DoodleSDK has two more utility classes.
OSCHelper: provides support for sending messages using the OpenSoundControl

communication protocol. osc messages are streamed over udp using the oscpack
c++ library. This is available to both Applications and Gesture Recognisers, though
the communication mechanism based on QStringLists is preferred for internal
communications, and OSCHelper should be used to communicate with applica-
tions that are external to Doodle. For example, the Sequencer application uses it
to send MIDI messages to an expander developed in Pure Data.

Settings: provides support for storing configuration data read from an XML file. This is
mainly used by the main Doodle Application described in the next section.

Figure 3.5. the Doodle demo application in action.

36

3.2	 Doodle

Doodle is the actual core of the demo application. It is composed of an Application class,
which is a special IApplication that acts as a supervisor and message router for all the
other IApplications. This is the reason because the Application class in figure 3.1 both
implements and depends on interface IApplication. This special Application is also a cli-
ent for TuioListener, as indicated by the presence of the tuioCycle() method. This means
that it directly receives tuio messages, clones them (using the TuioProxy) and makes
them available to all the other Applications and Gesture Recognisers.

Doodle also implements visual feedback. It may have been an interesting idea to
develop a separate application that receives appropriate osc messages from Doodle and
renders the visual feedback, which is what happens in the original Reactable application,
but for sake of simplicity it was chosen to make Doodle directly render the visuals.

For this reason the Viewport and Painter classes exist, although not detailed in fig-
ure 3.1. Painter class is a QPainter helper that’s responsible for rendering all the visual
objects – i.e. Widgets, Traces and other feedback – to a dynamic texture that is ap-
plied to a GL_QUAD eventually rendered inside the Viewport. The Viewport itself
is a QGLWidget, which is a QWidget for displaying OpenGL content. It may seem

Figure 3.6. “A” glyph being drawn. As can be deduced from the source code of the Tonalizer
Application, correct interpretation of this gesture will result in creation of a new slot for chord

A major.

37

unreasonable to paint on a dynamic texture instead of directly in the Viewport unless
noted that the beamer projecting the visual interface is not perpendicular nor perfectly
aligned with the projection surface. This way it is possible to adjust the GL_QUAD to
compensate for displacement and perspective distortion.

3.3	 Glyph

Rather than implementing a particular recognition method, this gesture recogniser fea-
tures a plug-in architecture so that many different handwriting recognition methods can
be developed using only one gesture recogniser. Which method is to be used is set in the
Doodle configuration file. This means that it's necessary to re-configure and restart the
application in order to test another method, unless some way live re-configuration meth-
od is developed. Despite this apparent complexity, having a single broker that handles
communication with Doodle dramatically reduces development errors. It also allows
to develop recognition methods independently from Doodle, since the IGlyphEngine
interface expects a QList of QLists of QPoints1 instead of a Group.

1. It's a QList< QList< QPoint> > in c++ notation.

Figure 3.7. Bézier glyph for letter “E”. The red point is the first point, the blue point is the last
point. The arrow represents the direction information associated with the glyph.

38

3.4	 Glyph	Recognition	Engines

A number of techniques for handwriting recognition exist, from simple correlation of
images to complex heuristics and handwriting movement analysis. Given the nature of
user’s input on the Reactable, given that interaction should be as easy as possible, and
given that the set of symbols to be recognised could be large and dependent on different
cultures, languages and even notation, it was almost natural to think of simple stylised
symbols, like the glyphs that most PDAs and other similar devices are already imple-
menting as their input system.

Considering that user’s input is a set of points forming segments and curves, two dif-
ferent techniques were implemented.

3.4.1	 Bézier	engine

This is the first Glyph plug-in that was developed. It models user’s input with a high de-
gree Bézier polynomial and tries to match it with one of the models provided via a XML
configuration produced using the Bézier Glyph building tool, which is documented at
the end of this Chapter. A sketch of the matching algorithm is provided.
1. Take the first Glyph. Note: in current implementation, it actually takes just the first

Trace of the Glyph. This is because the models to match against are made of a single
Bézier curve. It should be trivial to extend this to examine all the Traces.

2. If necessary, decimate the number of points to less than 52.
3. Let n be the number of points - 1 after decimation. Use them to make Bézier curve

of degree n.
4. Compute N constant time samples of user’s Glyph.
5. Normalise the constant time samples inside the unitary square.
6. Compute the orientation of the Glyph. Note: orientation is defined as the vector

starting at the first point and ending at the last point of the Glyph.
7. Load the models. For each model, rotate them according to input’s orientation and

compare one by one the points, one from the model and one from the Glyph to be
recognised. Keep count of how many such pairs are within a given distance to each
other. The model with the higher score is the best match.

Step 2 may sound strange, yet there is an explanation. The Bézier curve of degree n can
be generalised as follows. Given the points P0, P1, … , Pn, the curve is

and the problem resides in the binomial coefficient. In fact C ( 52 , 26 ) is the highest
binomial coefficient that can be stored in 64 bit unsigned integers. For this reason it is
necessary to work with curves of degree less than 52, unless bigger integers are available.

() (1)B Pt
n

k
t t

k

n
n k k

k

0

= -
=

-c m/

39

Reduction is done by subsampling the set of points at an appropriate ratio. More sophis-
ticated techniques can be used, but this is safe and quick enough.

Step 4 also needs an explanation. The algorithm compares the first point from the
model with the first point from the input, then the second from the model with the
second from the input, and so on. Hence it is necessary to require models and input to
have the same amount of points. Moreover, since a model’s score is increased each time
two such points are close enough, it is reasonable to make these points have the best
chance to be close to each other. By sampling the equation at regular t intervals, the two
corresponding samples are likely to be quite close to each other when the input and the
model are similar enough. A constant cord sampling is also feasible but it is computa-
tionally more expensive and should have no particular advantages.

Step 6 is arguably the key point in making the approach even more natural, from
user’s perspective. In fact, each model has an associated direction information, which
is given by the vector starting from the last point in the glyph and pointing to the first
point in the glyph, as depicted in figure 3.7.

Provided users draw glyphs in the same way models are drawn, which is usually a
requirement in similar systems like Palm’s Grafiti or Xerox’s Unistrokes, it is possible to
align user’s input with models, thus allowing users to draw glyphs in any direction.

3.4.2	 Polygonal	engine

As it is easily guessed, the Bézier technique is quite heavy, computationally speaking. In
principle, this second technique is faster than the previous, but it eventually turned out
to be less general and less precise in practice. A sketch of the algorithm is provided.
1. Take user’s input, which is assumed to be drawn on a PadWidget.
2. For each model, try to match user’s input with a model by subsequently rotating it by

90 degrees each step. Note: this way we make four comparisons using the same model
because we don’t know in which direction the user has drawn the glyph.

3. The model that contains the highest number of input’s points is the best match.
Although it seems computationally easier, flaws in this technique are clear. First of all, it
requires a widget to determine orientation of user’s input. Second, models are similar to
that in figure 3.8: in order to effectively match small variations of the same glyph, they
need to be thick, and this way a lot of false positives are returned. Third, although not
requiring users to draw glyphs in a specific way, there’s no easy way to determine the
orientation of user’s input, so a reference is necessary – like a widget – and at least four
comparisons – or even more – are needed. Increasing the number of repetitions is likely
to bring computational cost near to that of Bézier technique with no guarantee of better
matching performance.

Nonetheless this engine was kept to show that different engines can be developed.

40

3.5	 Application:	Tonalizer

The Tonalizer application is the Doodle Application that implements ideas de-
scribed in section 2.4.1. It’s visually represented by a TonalizerWidget surrounded by
ChordButtonWidgets, each of whose is used to represent a chord in the sequence of
chords.

This application uses three gesture recognisers, namely Glyph, MultiTap, and
StraightStroke. Glyph is used to create and edit chords in the sequence using handwrit-
ing recognition. The ChordWidget input method instead is only used to edit existing
chords, and it’s activated by dragging a chord slot away from the object, a gesture which
is recognised by the StraightStroke gesture recogniser. Finally, MultiTap is used to in-
teract with the ChordWidget. In fact this widget is a collection of buttons, both push
buttons and check buttons, and can be activated, deactivated with one tap, and hidden
with two taps. MultiTap is also used to activate and deactivate single chord slots, thus
modifying the chord sequence.

This application also features an optional PadWidget which is used when a Glyph
Recognition Engine needs a writing pad, like the Polygonal engine. While not being re-
ally useful on its own, this widget is still interesting because it’s the only one that is actu-
ally pinchable, thus completely demonstrating the effects of the Pinch gesture recogniser
which is otherwise only used to drag widgets around.

Figure 3.8. Polygonal model for number 6.

41

3.6	 Application:	Sequencer

The Sequencer application is the Doodle Application that implements ideas described
in section 2.4.2 by receiving information from the Tonalizer and creating appropriate
sequence slots around the SequencerWidget.

This application uses two gesture recognisers, namely MusicTouch and StraightStroke.
While StraightStroke is used to open KeyboardWidgets, in a way similar to that used by
the Tonalizer to open ChordWidgets, MusicTouch is the gesture recogniser that turns
strokes into notes on the KeyboardWidgets. These KeyboardWidgets are built according
to the chord specified in the corresponding chord slot of the Tonalizer, and so they have
a number of different scales that can be chosen, depending on those who fit the chord.

Which scales fit a chord is decided as follows. A large number of scales is set up when
the application is first loaded. Note that these scales are lists of integers representing
half-tone intervals from the root, hence for example a major pentatonic scale is [0, 2, 4,
7, 9] where 0 is the root, 2 is the major second, 4 is the major third, 7 is the perfect fifth
and 9 is the major sixth. Each time a chord is created or modified, it is tested for inclu-
sion in each scale. Those scales that entirely contain the chord are chosen. This is not a
very sophisticated algorithm, yet it turned out to be quite satisfying when working with
most scales, from the most common ones, like major and various minors, to less com-
mon ones like diminished or even whole tone and some other synthetic scales.

Figure 3.9. the Tonalizer with a chord slot and its ChordWidget.

42

(a) MusicTouch sketch gesture

(a) MusicTouch result

Figure 3.10. MusicTouch gesture recogniser in action. In figure (a) a stroke is being
drawn over a KeyboardWidget. In figure (b) we see the result of that gesture.

43

3.7	 Application:	Metronome

The Metronome application implements the object suggested in section 2.4.2. It is argu-
ably the simplest application among those developed since its function is to broadcast a
"beat" message at given time intervals.

The actual implementation is pretty straightforward: depending on the object’s angle, a
time interval is computed. This is fed to a QTimer object that calls the Metronome::beat()
slot, which in turn emits a "beat" message. This message can be used by any other appli-
cation interested in having a timing reference. For example, the Sequencer application
uses the Metronome to regulate the advancement of the sequences and eventually play
MIDI notes.

3.8	 Other	Gesture	Recognisers

MultiTap: a tap gesture is like a mouse click. It is performed by briefly pressing a finger
against the table's surface and lifting it shortly after that. This gesture recogniser
detects multiple subsequent taps that are nearby in space in time. This is done by
analysing all the Traces in a Group. If one of these is not recognised as a tap, then
the Group is not recognised as a MultiTap gesture.

Figure 3.11. the Pinch gesture recognizer used to drag around a non-pinchable widget.

44

Pinch: this is probably the most widely known multi-touch gesture. It is performed with
two fingers that can approach or leave each other, thus performing a zoom action,
or even be moved around together, thus performing a drag action, as in figure 3.11.

StraightStroke: as the name suggests, this detects whether a stroke is a linear seg-
ment or not. For a detailed description of the recognition method, see the class
documentation.

3.9	 Bézier	Glyph	building	tool

The Bézier Glyph building tool shown in figure 3.12 is not strictly part of Doodle, while
being an essential tool to construct the set of modules for the Bézier Glyph engine. It
is an independent Qt application which allows to create and manipulate Bézier curves
of arbitrary degree1, save them to a source XML file and output the models – which are
constant time samplings of the actual curves – to another XML file which will be used
as a resource by the Bézier Glyph Engine.

The main interface is composed of two combo boxes for glyph/variant selection, and
a drawing area in which control points of the Bézier curve being edited can be created,
moved around, and deleted, and the resulting curve is previewed in real-time.

1. Actually, of degree up to 52, as noted in section 3.4.1.

Figure 3.12. Bézier Glyph Builder.

The control points can be moved around by drag and drop, and they can even be
moved around in groups. Multiple selections are performed by pressing the Control key
and left-clicking on each control point. Creation of new control points is performed by
selecting two or more existing control points and then pressing "A" on the keyboard.
This will add a control point between each pair of selected points. Deletion is similarly
performed by selecting the undesired points and then pressing "X" on the keyboard. The
control points are rendered as cyan circles and the selected ones are white and thicker,
but two special points exist, namely the first and the last. These are rendered respectively
green and red, and they’re used to determine the orientation of the glyph – which also
means how the glyph is supposed to be drawn by the user, as explained in section 3.4.1.

When the glyph set is completed, it is possible to customise the number of constant
time samples name of the output file, which is finally generated by clicking on the
"Build" button in the lower right side of the window.

No similar tool was developed for creating a set of polygonal models. In fact, as the
Bézier tool makes a lot of complicated work that is not feasible by hand, building a set
of polygonal models is a lot simpler and can be done with very small effort by using
any vector drawing software like Adobe Illustrator, Autodesk Autocad, free software like
Inkscape and Blender, or even graph paper and pencil. In fact it’s just a matter of draw-
ing the polygonal mesh on a planar grid and writing each point’s coordinate in an XML
file which will be used as a resource by the Polygonal Glyph Engine.

4

Conclusions

4.1	 Results

Due to lack of time and infrastructure availability, a thorough evaluation of the system
has not been possible. However, each iteration presented in Chapter 2 was preceded by
an informal assessment phase in which each draft has been submitted for evaluation to
people familiar with the technology or at least familiar with the basic hci concepts, as
well as to random people whose knowledge level of these topics is nonexistent or at least
not known. Comments and reactions of people involved in each assessment phase were
noted and used in the next iteration.

The final iteration described in section 2.5 is the one that has been implemented in the
final demo application that we described in Chapter 3. A sample of those who partici-
pated in previous assessment phases had access to an informal test session once the ap-
plication was deemed sufficiently ready and stable. There had been no time to design in
advance these test sessions in order to test specific features of the application by having
users perform some precise goals and noting the results in a scientific way. Nonetheless
all the sessions were aimed at evaluating how easy or difficult it was to execute some ba-
sic tasks, and whether users felt that a specific task was already easy enough to perform
or presented any difficulties.

Although this final round of tests was not methodically carried on, it reported mixed
yet interesting results.
ʶ Most of the people who were already familiar with the Reactable, and so with the old

Tonalizer, regarded the newly developed system as an interesting development, mostly
because of the possibility to choose a subset of notes that ensures that no mistakes are
made; however they also doubted that this whole renewed Tonalizer could really add
some significant value to the Reactable as an instrument. On the other hand, some of
those who weren't familiar enough with the Reactable didn't always get how this was
an improvement at all, being just more fascinated with the original Reactable and its

50

sound exploration freedom.
ʶ Regarding the overall simplicity of task performance, most of the people – both fa-

miliar and not – reported that some actions weren't that obvious to perform, for
example the gesture that opens the chord widget or the piano-roll.

ʶ They also reported that the reason because some slots around the tangibles were
filled or empty was not really clear, although finding it reasonable when told. This
suggests that more expressive visual feedback may be developed to improve feedback
understanding.

ʶ Almost everyone found that the piano-roll didn't always work as expected. This was
absolutely expected due to the rough implementation of the algorithms.

ʶ Nonetheless almost everybody found the handwriting idea pretty interesting in per-
spective, even funny, although it didn't always work as expected, but this is again due
to rough implementation.

4.2	 Future	developments

The aforementioned observations suggest a number of improvements. Nonetheless there
are other ideas, even not strictly related with this thesis, that may be worth exploring.

First of all, as noted in subsection 2.4.2, there is a problem with how to manage the
choice of a different scale while a melody is already placed on the affected piano roll.
There we discussed two possible solutions, although neither of these is currently imple-
mented. Those two solutions shall be implemented and assessed in order to find out
which one better fulfils the principle of least astonishment.

Speaking of multiuser, multi-touch and tangible interfaces, the range of possibilities
they give about sound and music control is quite wide, yet they lack some important
gestures like tapping or pushing (Bosi, 2009). It may be interesting to bring more differ-
ent gestures to the Reactable, for example tapping and pushing, or even aerial gestures,
like those controlling theremins, thus augmenting freedom of expression.

When accounting for multiple users, even if the system can be simultaneously used
by a number of different people, it may be interesting to make it interact with other
similar devices, or even traditional musical instruments. This would allow the creation
of some sort of "virtual improvisation space" in which any kind of sophisticated tech-
nology can be implemented, from telling other performers about what's going on with
other devices or instruments, to some kind of automatic suggestion for moving on the
performance based on past and present information.

In Chapter 1 we discussed music education, but this is obviously not the entire story.
During the development of this thesis there had been contacts with people involved in
education and assistance to people with disabilities such as physical handicaps or even

autism and learning disorders. Most of them were extremely fascinated by the Reactable
as a tool to make these people approach music and possibly help them express them-
selves. Also there have been comments about how such a colourful musical instrument
could be approached by synæsthetes, and even if such an instrument could help in
diagnosis of these conditions.

4.2.1	 A	final	note	about	music	theory

Despite this work's title, the proposed objects don't seem to bring much "music theory"
into the Reactable, nor it's clear how they should represent a "practical approach" to it.
The work developed for this thesis was heavily time-constrained, and as such it couldn't
cover the entire spectrum of possibilities that a topic of such magnitude should require.

In section 1.5 we discussed implicit learning and music education, also hinting how
the system described in this thesis should be developed in order to effectively claim to
be an approach to music theory. The demo application described in Chapter 3 doesn't
implement those concepts yet, but this thesis should be considered as a first important
milestone, and such concepts are going to be considered and thoroughly developed in
the future.

Bibliography

Emmanuel Bigand, Philippe Lalitte, and Barbara Tillmann. Sound to Sense, Sense to Sound. A 
State of the Art in Sound and Music Computing, chapter 2. Logos, 2008.

Tina Blaine and Tim Perkis. The Jam-O-Drum interactive music system: A study in interaction
design. In Proceedings of the ACM DIS 2000 Conference. ACM Press, August 2000.

Mathieu Bosi. Extending physical computing on the Reactable. Master’s thesis, Universitat
Pompeu Fabra, 2009.

Noam Chomsky. Aspects of the heory of Syntax. The MIT Press, 1965.

Sergi Jordà, Gunter Geiger, Marcos Alonso, and Martin Kaltenbrunner. The reacTable: Exploring
the synergy between live music performance and tabletop tangible interfaces. In Proceedings 
of  the  first  international  conference  on  "Tangible  and  Embedded  Interaction”  (TEI07). Baton
Rouge, Louisiana, 2007.

Golan Levin. Painterly interfaces for audiovisual performance. Master’s thesis, Massachussets
Institute of Technology, 2000.

Jean Molino. Toward an evolutionary theory of music and language. In Nils Lennart Wallin,
Bjorn Merker, and Steven Brown, editors, he Origins of Music, Bradford books, pages 165–
176. The MIT Press, 2000.

Nokia Corp. Qt 4.6 whitepaper. http://qt.nokia.com/files/pdf/qt-4.4-whitepaper,
December 2009.

James Patten, Ben Recht, and Hiroshi Ishii. Audiopad: a tag-based interface for musical perform-
ance. In Proceedings of the 2002 conference on New Interfaces for Musical Expression, May 2002.

Nicolas Ruwert and Mark Everist. Methods of analysis in musicology. In Music Analysis, volume
6, pages 3–36. Blackwell Publishing, 1987.

Carol A. Seger. Implicit learning. In Psychological Bullettin, pages 115:163–169. 1994.

http://qt.nokia.com/files/pdf/qt-4.4-whitepaper

	1. Background
	1.1 Audiovisual performance
	1.2 Tabletop and tangible
	1.3 The Reactable
	1.4 Why music theory on the Reactable is desirable
	1.5 Implicit learning
	1.5.1 Music as a natural language
	1.5.2 Music education

	2. Design process
	2.1 Requirements
	2.2 The circular accordion
	2.3 Smaller bits
	2.4 A step forward in user-friendliness
	2.5 Final implementation

	3. Doodle: a proof of concept
implementation
	3.1 DoodleSDK
	3.1.1 Applications and Gesture Recognisers
	3.1.2 Tangible objects and finger tips
	3.1.3 Visual feedback

	3.2 Doodle
	3.3 Glyph
	3.4 Glyph Recognition Engines
	3.4.1 Bézier engine
	3.4.2 Polygonal engine

	3.5 Application: Tonalizer
	3.6 Application: Sequencer
	3.7 Application: Metronome
	3.8 Other Gesture Recognisers
	3.9 Bézier Glyph building tool

	4. Conclusions
	4.1 Results
	4.2 Future developments

	5. Bibliography

